
www.syntegris.de

Ketzerische Gedanken
zu SQL und PLSQL

glaub nicht alles was die Experten sagen

Sven-Uwe Weller

www.syntegris.de

Mail: sven.weller@syntegris.de
Twitter: @SvenWOracle
Blog: svenweller.wordpress.com

Sven-Uwe Weller

Syntegris CEO, CTO "Design and Development"

Oracle Certified Professional, Oracle Certified Expert, Oracle Ace

active OTN Member, Apex, SQL, PLSQL

mailto:sven.weller@syntegris.de
http://svenweller.wordpress.com

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

DOGMAS

Ketzerische Gedanken zu SQL und PLSQL

SEQUENCES can not be GAPLESS

when OTHERS then null is a BUG
select * is BAD

SQL is always faster than PLSQL

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

DOGMAS

Ketzerische Gedanken zu SQL und PLSQL

when OTHERS then null is a BUG
Hints and Tips - The simple guide to WHEN OTHERS THEN NULL

Connor McDonald
21. Aug 2017 https://youtu.be/Dw0qRw8P0cQ

A when others is almost always a BUG unless it is immediately followed by a
RAISE.

Tom Kyte
12. Aug 2001

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SQL und PLSQL

when OTHERS then null is a BUG
Connors typical target
audience?

when OTHERS then null is a BUG

Wer ist die Zielgruppe?

Gehört Ihr dazu?

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

unlessunless
there is a very good reason!

Ketzerische Gedanken zu SQL und PLSQL

when OTHERS then null is a BUG

there is a very good reason!

Comment the reason!
Explain why you break the rule in a
comment.

when OTHERS then null is a BUG

Comment the reason!

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

sequences can
not be gapless

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

SEQUENCES can not be GAPLESS
There is a fact about sequences - an UNDENIABLE, UNESCAPABLE fact
- they are not gap free, will never be gap free, they will have gaps!

Tom Kyte
12. Nov 2002

Q: ... is there a standard technique for avoiding or accounting for gaps?
A: No. And everything you "build-yourself", will be flawed (buggy and/or
causing serialization points you do not want).Toon Koppelaars

1. Oct 2009

Ketzerische Gedanken zu SQL und PLSQL

Doc ID 197212.1
15. May 2018

How To Setup Gapless Document Sequencing in Receivables
Please note that in Oracle Receivables GAPLESS document sequencing only applies to INVOICES.
You can use document sequences to uniquely number Receipts, Bills Receivables, Adjustments,
and other data objects, but they are not guaranteed to be gapless. The implementation steps
detailed in this document only applies to Invoices.

DOGMAS

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SQL und PLSQL

SEQUENCES can not be GAPLESS

"sequence" ?

SEQUENCES can not be GAPLESS

the word "sequence" is used for
different things 
- the number generator

- the number value

- the stored values in ID column

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SQL und PLSQL

SEQUENCES can not be GAPLESS

"sequence" ?

XY problem

SEQUENCES can not be GAPLESS

"sequence" ?

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

contradictory
goals

Ketzerische Gedanken zu SQL und PLSQL

SEQUENCES can not be GAPLESS

Performance

GaplessnessMulti User

Single User

Low Performance

almost gapless

complex
technical
problem

Choose 2 of 3 and sacrifice the other.

Interesting is what happens when we
reduce one of the goals.

The problem is complex to
understand

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SQL und PLSQL

SEQUENCES can not be GAPLESS

"sequence" ?

XY problem

SEQUENCES can not be GAPLESS

"sequence" ?

cognitive bias  
and premature closure

XY problem

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

select * is bad

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SQL und PLSQL

select * is BAD

DOGMAS

Obviously you shouldn’t use the lazy “*” notation in any production code
– it can cause several different problems (including the dangers of
“whoops, I didn’t mean to make that one invisible”) Jonathan Lewis

22. Jul 2015

7 ways to avoid
SELECT * queries in SQL Developer

Jeff Smith
23. Nov 2016

But wait, what’s wrong with SELECT * FROM queries?
• you don’t need all the columns
• columns can change
• columns can be added
• columns can be removed

At some point, your application (or report) will ‘break.’

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SQL und PLSQL

select * is BAD

this code is bad.

WHY?
1) data redundancy (this code is too

simplified. Real cases are way
more complex)

2) fixed column order mapped to
dynamic column order  
=> implicit mapping

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SQL und PLSQL

select * is BAD

table elimination

freezes column order

hidden * expansions

Too often select * is categorized as
evil. I think those cases are extremly
rare. In most cases the problem is
somewhere else. and we should
concentrate on the real issues.

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SQL und PLSQL

select * is BAD

extract

transformstore

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

SQL is
always faster
than PL/SQL

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

DOGMAS

Ketzerische Gedanken zu SQL und PLSQL

SQL is always faster than PLSQL

When and How to Write SQL in Oracle PL/SQL 
You should do as much as possible in "pure" SQL

Steven Feuerstein
2014

If you can do it in a single SQL
statement, by all means do it in a
single SQL statement. Do not waste
time, energy, and CPU cycles writing
procedural code that will run slower
than regular SQL.

Tom Kyte
Apr 2007

I have a pretty simple mantra when it comes to developing database
software, and I have written this many times over the years:

• You should do it in a single SQL statement if at all possible.
• If you cannot do it in a single SQL statement, do it in PL/SQL.
• If you cannot do it in PL/SQL, try a Java stored procedure.
• If you cannot do it in Java, do it in a C external procedure.
• If you cannot do it in a C external procedure, you might want

to seriously think about why it is you need to do it.

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SQL und PLSQL

SQL is always faster than PLSQL

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SQL und PLSQL

SQL is always faster than PLSQL

SQL = 4th GL
PL/SQL = 3rd GL

Context Switches

Performance vs. Maintainability

SQL = 4th GL
PL/SQL = 3rd GL

Context Switches

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SQL und PLSQL

SQL is always faster than PLSQL
"How to compute non-overlapping RowID ranges that completely cover a nominated table and that
all contain, as nearly as is possible, the same number of rows."

Bryn Llewellyn
Okt 2015

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

DOGMAS

Ketzerische Gedanken zu SQL und PLSQL

SEQUENCES can not be GAPLESS

when OTHERS then null is a BUG
select * is BAD

SQL is always faster than PLSQL

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

CONCLUSION

Ketzerische Gedanken zu SQL und PLSQL

understand WHY
WHO is target

expert can be WRONG
new features CHANGE

WHEN to use

Believe the expert!
Unconditionally!

But only if it is me!
© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Final thoughts

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Final thoughts

Never say always,
never say never,
I always sayTom Kyte

