e&ﬁu

:,;—:“3
e 3 28

e d- - B
die Exp%rfgn!é

information

solutions

Sven-Uwe Weller

v Syntegris CEO, CTO "Design and Development"
v Oracle Certified Professional, Oracle Certified Expert, Oracle Ace

v active OTN Member, Apex, SQL, PLSQL

\ &
- —
AN O
\ ©
b
b)
- @w X

Mail: sven.weller@syntegris.de
Twitter: @SvenWOracle
Blog: svenweller.wordpress.com

ORACLE’
ACE

www.syntegris.de

mailto:sven.weller@syntegris.de
http://svenweller.wordpress.com

Ketzerische Gedanken zu SOL und PLSQOL
DOGMAS

when OTHERS then null is a BUG
select * is BAD

SQL 1s always faster than PLSQL

SEQUENCES can not be GAPLESS

Ketzerische Gedanken zu SOL und PLSQOL
DOGMAS

when OTHERS then null is a BUG

ﬂ Hints and Tips - The simple guide to WHEN OTHERS THEN NULL

comerneoras MIEPSe//youtu.be/DwlgRw8Plc

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SOL und PLSQOL

when OTHERS then null is a BUG
Connors typical target

audience?

Wer ist die Zielgruppe?

Gehort |hr dazu?

(9 Connor McDonald { Folgeich Y
: @connor_mc_d

The Cut-Paste mentality. We gave an
AskTOM answer about emailing audit data
from the database. The sample code had an
email recipient of the AskTOM email address.

Guess who is receiving sensitive audit data
each morning? #facepalm

& Tweet (ibersetzen

06:07 - 5. Nov. 2018

24 Retweets 112 ,Gefallt mir“-Angaben % e »9 e ‘ g @ d) ﬁ

QO 10 T 24 ¥ 12 [

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SOL und PLSOL

when OTHERS then null 1s a BUG

unless
there is a very good reason!

Explain why you break the rule in a

con ment

Comment the reaso

};«;ﬁ*"“" T
-

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SOL und PLSQOL
DOGMAS

Y

2

‘*7‘ There is a fact about sequences - an UNDENIABLE, UNESCAPABLE fact

Sl they are not gap free, will never be gap free, they will have gaps!
12. Novyo 2

Q): ... is there a standard technique for avoiding or accounting for gaps?

N A: No. And everything you "build-yourself”, will be flawed (buggy and/or
Toon Koppelaars ~ CaUSING serialization points you do not want).

1. Oct 2009

ORACLE How To Setup Gapless Document Sequencing in Receivables

MY ORACLE SUPPORT

Please note that in Oracle Receivables GAPLESS document sequencing only applies to INVOICES.
?50;3””3201137212-1 You can use document sequences to uniquely number Receipts, Bills Receivables, Adjustments,
. May

ORACLE and other data objects, but they are not guaranteed to be gapless. The implementation steps
SO T S— detailed in this document only applies to Invoices.
E-BUSINESS SUITE

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SOL und PLSOL

SEQUENCES can not be GAPLESS

“sequence” ?

the word "sequence" is used for
different things

- the number generator

- the number value

- the stored values in ID column

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SOL und PLSQOL

SEQUENCES can not be GAPLESS

"sequence” ?

XY problem

Ketzerische Gedanken zu SOL und PLSOL

SEQUENCES can not be GAPLESS

Choose 2 of 3 and sacrifice the other.

complex

. Interesting is what happens when we
technical reduce one of the goals.
PrOblem The problem is complex to

understand

Single User

‘ Low Performance

T4

contradictory
goals

almost gapless

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SOL und PLSOL

SEQUENCES can not be GAPLESS

"sequence” ?

XY problem

cognitive bias
and premature closure

synte © SYNTEGRIS INFORMATION SOLUTIONS GMBH
c~———

r—

NO SWIMMING, PLAYING, -
OR FISHING IN WATER .

XX

BEWARE OF
DANGEROUS WILDLIFE

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SOL und PLSQOL
DOGMAS

Obviously you shouldn’t use the lazy “*” notation in any production code
— it can cause several different problems (including the dangers of

Jonathan Lewis hoops, | didn’t mean to make that one invisible”)

22. Jul 2015

But wait, what’s wrong with SELECT * FROM queries?

7 wavs to avoid « you don’t need all the columns
/. Ways 10 avola .

: columns can change

< . . . I be added
Bl B SEECT *queries in SQL Developer . columns can be removed
eff Smit

25 Now 2016 At some point, your application (or report) will ‘break.’

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SOL und PLSQOL

select * is BAD

1 insert into emp(EMPNO,ENAME,JOB,MGR,HIREDATE,SAL,COMM,DEPTNO)

2 select * from scott.emp;

this code is bad.
WHY?

1) data redundancy (this code is too
simplified. Real cases are way
more complex)

2) fixed column order mapped to
dynamic column order
=> implicit mapping

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SOL und PLSQOL

select * is BAD

Too often select * is categorized as
evil. | think those cases are extremly

rare. In most cases the problem is
somewhere else. and we should

concentrate on the real issues. fr e ez e S C O l u m n O r d e r

table elimination

hidden * expansions

Ketzerische Gedanken zu SOL und PLSQOL

select * is BAD

declare
cursor c_sourcedata
is (select * -- "generic" column list
from (

-- begin dummy select - replace with your own data so
select level as nr , substr(to char(to date('l','J")
from dual
connect by level &amp;lt; 1000

-— end of dummy select
)t xtract

procedure storeResults(p targetdata in out nocopy targetdata
is
begin
-- do a bulk insert/update/merge
forall £ in 1..p_index
insert into testdummy
values p targetdata (f);
-— 1f needed handle exceptions here

-- unload target collection after it is sucessfully st
p_index := 0;
p targetdata.delete;

end storeResults;

open
loop

—_——

stor

c_sourcedata;

—-— fetch in chunks
1 sourcedata.delete;
fetch c_sourcedata bulk collect into 1 sourcedata limit

-—- process data
-- do the mapping between data source and data target
for i in 1..1 sourcedata.count loop

-—- reset row

1 targetrow := 1 targetrow empty;

—-—- source record to target record
-- mapping rules
1 targetrow.id

1 targetrow.text

1 sourcedata (i) .nr;
1 sourcedata (i) .spelling;

-- store result in collection

-- the target collection needs to use its own index.
i target := i target + 1;

1l targetdata (i target) := 1 targetrow;

end loop;

-- store data

if i_target &amp;gt;= c_target bulksize then
storeResults (1_targetdata,i_ target);

end if;

exit when c sourcedata%notfound;

end loop;
close c_sourcedata;

inally store remaining data
eResults (1_targetdata,i_target):;

nsrorm

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SOL und PLSQOL
DOGMAS

-

i } . When and How to Write SQL in Oracle PL/SQL
\ . You should do as much as possible in "pure” SQL

Steven Feuerstein
2014

If yOU can dO It in a Single SQL | have a pretty simple mantra when it comes to developing database

software, and | have written this many times over the years:

Statement, by all means do it in a « You should do it in a single SQL statement if at all possible.

. « If you cannot do it in a single SQL statement, do it in PL/SQL.
Slng/e SQL statement. Do not waste . If you cannot do it in PL/SQL, try a Java stored procedure.

| TH . If you cannot do it in Java, do it in a C external procedure.
tlme’ energy, and CPU CyCIeS ertlng . If you cannot do it in a C external procedure, you might want

procedura[code that will run slower to seriously think about why it is you need to do it.
than regular SQL.

Apr 2007

synte © SYNTEGRIS INFORMATION SOLUTIONS GMBH
c~———

Ketzerische Gedanken zu SOL und PLSQOL

SQL is always faster than PLSQL

declare
v_source varchar2(4000) := lpad('ABCDEFGHIJKLMNOP',4000, 'x");
v_dummy varchar2(7);
type dtab is table of varchar2(7) index by binary_integer;
v_dummytab dtab;
v_time timestamp with local time zone;
begin
v_time := systimestamp;
for 1 in 1..10000 loop
select substr(v_source,i,7) into v_dummy from dual;
end loop;
dbms_output.put_line('SQL = "llextract(second from (systimestamp-v_time)));

v_time := systimestamp;
select substr(v_source,level,?7) bulk collect into v_dummyTab from dual connect by level <= 10000;
dbms_output.put_line('SQL2 = "llextract(second from (systimestamp-v_time)));

v_time := systimestamp;
for 1 in 1..10000 loop
v_dummy := substr(v_source,i,?7);
end loop;
dbms_output.put_line('PLSQL = "|lextract(second from (systimestamp-v_time)));

end:

Statement processed.
SQL = .285899

SQL2 = .156371
PLSQL = .000493

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SOL und PLSOL

SQL 1s always faster than PLSQL

SQL = 4th GL
PL/SQL = 3rd GL

Context Switches

Performance vs. Maintainability

Ketzerische Gedanken zu SOL und PLSQOL

SQL 1s always faster than PLSQL

"How to compute non-overlapping RowID ranges that completely cover a nominated table and that
all contain, as nearly as is possible, the same number of rows."

Method Normalized Elapsed Normalized CPU

Approx Method Plsqgl

Approx Method Chained Thl Fns 1020
Approx Method One Tbl Fn 353
Approx Method Sql Kyte 63
Approx Method Sql Lewis 53532
Approx Method Sql Llewellyn ?
Approx Method Sgl Ashton 1 236
Approx Method Sql Ashton 2 237

And the winner is...

My choice is Approx_Method_Plsql. And that isn’t just because I'm Oracle Corporation’s product manager for

&/ A PL/SQL. The fastest pure SQL approach is twice as slow as this. That might not rule it out were it not for the
fact that — at least it seems to me — it is rather difficult to understand.

g(%gé_lewellyn

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Ketzerische Gedanken zu SOL und PLSQOL
DOGMAS

when OTHERS then null is a BUG
select * is BAD

SQL 1s always faster than PLSQL

SEQUENCES can not be GAPLESS

Ketzerische Gedanken zu SOL und PLSQOL
CONCLUSION

understand WHY

WHO is target
WHEN to use
expert can be WRONG

new features CHANGE

Final thoughts
T

Believe the e'Xf)'ert'

But only if it is me! A

\
syntt—: © SYNTEGRIS INFORMATION SOLUTIONS GMBH
N ——

Final thoughts

‘ i, Never say always,
“lt ;

J / never say never,
o " | always say

